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ABSTRACT
Learning Analytics (LA) sits at the confluence of many contributing

disciplines, which brings the risk of hidden assumptions inherited

from those fields. Here, we consider a hidden assumption derived

from computer science, namely, that improving computational accu-

racy in classification is always a worthy goal. We demonstrate that

this assumption is unlikely to hold in some important educational

contexts, and argue that embracing computational “imperfection”

can improve outcomes for those scenarios. Specifically, we show

that learner-facing approaches aimed at “learning how to learn”

require more holistic validation strategies. We consider what infor-

mation must be provided in order to reasonably evaluate algorith-

mic tools in LA, to facilitate transparency and realistic performance

comparisons.

CCS CONCEPTS
•Human-centered computing→ User models; • Computing
methodologies; • General and reference→ Validation;
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1 INTRODUCTION
In Learning Analytics (LA) we find the confluence of many tribu-

taries, such as the Learning Sciences, DataMining, Human-Computer

Interaction, and Psychology [18, 48].While this intersection of fields

is exciting, it brings with it all the challenges of interdisciplinarity,

includingmodes of communication, and respect for different quality

criteria. As was described by Stember [49] for the social sciences,

while fields often claim interdisciplinary status, it is rare to see

this characteristic realised in practice. The LA community should

regularly check if it seems to be ’playing’ at interdisciplinarity, or
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if a genuine dialogue between disciplines is emerging, one that

sees the establishment of new common ground in a move towards

transdisciplinarity. Such a dialogue requires an ongoing and critical

examination of the hidden assumptions that are imported into LA

from other fields; are some fields getting an “easier” treatment be-

cause they came with tightly defined methodologies? Here, we will

call into question the suitability of appropriating validation criteria

from computer science for computational models underpinning

student-facing feedback, for particular forms of learning.
We think it timely, with the rising popularity of data science, to

call attention to some of the problems that can infiltrate a field like

LA if we do not pay careful attention to our underlying assumptions.

Sometimes it is all too easy to evaluate a methodology, using a set

of field specific criteria, while leaving out the learning. Therefore,

the purpose of this paper is to ensure that the field of LA maintains

a balance between its contributing fields, in both the creation of its

tools and protocols, and in the ways that we evaluate them.

Specifically, we are going to examine the notion of how LA eval-

uates its computational tools. We will draw attention to what we

perceive as an imbalance, where computational validation methods

(which are well defined and therefore easier to use in evaluating

tools) can lead to valid LA tools and approaches being inappropri-

ately criticised, or tools with little educational merit being lauded

as performing well. More holistic ways of summarising validation

across all relevant disciplines are required and we will conclude

with a proposal for how LA might work towards achieving this.

1.1 What is learning analytics for?
As was succinctly stated by Gašević et al. [18]: “Learning analytics

is about learning”. The challenge for LA is to establish plausible

relationships between models derived from the neatly quantifiable

world of digital data, and the complex socio-cognitive world of

“learning”. Often we see the validation of different LA tools using

measures from the computational sciences, such as accuracy, pre-

cision, recall, etc. That is, metrics are used which tell us about the
machine’s performance with respect to a standard, not about how
the machine is enhancing learning as part of the whole system. The

former excludes both the human and the broader educational con-

text in which the use of the LA tool is embedded. We are not against

improving the performance of our algorithms per se, but will argue
here that if the balance of evidence (in the field, or a particular

research program, or product development) focuses solely on the

metrics of computational performance, then there is no a priori
reason to expect that these performance gains should translate

into improved learning outcomes. We will draw attention to an

important class of learning contexts where the notion of a correct

prediction, or perfect classification, is far more difficult to define

and formalise. This creates challenges for traditional computational

https://doi.org/10.1145/3170358.3170413
https://doi.org/10.1145/3170358.3170413
https://doi.org/10.1145/3170358.3170413


LAK ’18, March 7–9, 2018, Sydney, NSW, Australia Kirsty Kitto, Simon Buckingham Shum, and Andrew Gibson

approaches to validation; new ways of proceeding will be required.

However, we must first start to unpack the underlying goals behind

our LA tools before we can attempt to evaluate them. We begin by

considering two broad classes of learning.

1.2 What type of learning?
Over the years an ongoing stream of work in LA has focused upon

student facing tools that are used directly in a class context (e.g.

[4, 7, 20, 28, 33, 38, 51, 52]). It seems possible to identify two broad

motivations behind these solutions: are they teaching students

curriculum content, or are they trying to help them learn how to

learn more effectively? The way we judge the performance of an

algorithm must depend upon a clear understanding of its purpose.

1.2.1 Learning content and skills. The challenges teachers often
face revolve around helping students to learn arithmetic, spelling,

historical facts, geography, algebra, etc. Reports can help teachers to

see if their students have acquired the requisite knowledge, and to

identify which parts of the cohort need extra help [4]. A number of

projects are starting to personalise messages to students according

to their performance in key teacher identified tasks [37]. Often

this process of knowledge acquisition can be enhanced by drill

and practice models, and educational technology has provided a

large number of solutions to this end. For example, Intelligent

Tutoring Systems (ITS) have been shown to positively affect student

learning outcomes when compared to conventional educational

experiences [33, 34, 51]. Closely related, we see adaptive learning

[23], and recommendation systems [16, 26] becoming available in

many online learning environments. Designed well, these types

of systems evidently assist students by optimising the pathway to

mastering a clearly bounded domain with a curriculum and modes

of reasoning that can be formally modelled.

In scenarios of this type it is important that we utilise a model

of student learning that closely approximates reality, and that the

computational approaches we adopt reflect the underlying reality

as closely as possible. After all, an ITS that incorrectly fails a student

on a task will be confusing and annoying (to say the least), and

could potentially teach the student incorrect content and/or skills.

Less clear cases arise as we start to explore more complex scenar-

ios. Consider, for example, an instructor seeking to help her students

to communicate more effectively in a public forum. A number of

frameworks have been developed to help people think about this

problem [36], and manual qualitative analysis is frequently used

by researchers to classify student contributions. Increasingly, LA

tools are being developed to automate this classification process

using Machine Learning (ML) (see e.g. [13, 29]), and it is common

to evaluate these methods by considering how well their classifi-

cations overlap with that of human annotators (a point to which

we will return shortly). Most of these tools are currently used in

a research context, but the aim is to use them in our teaching and

learning practice. How might we do this? Two possibilities arise:

An instructor or recommendation system might examine

the classifications that have been automatically generated

with a view to acting upon this information. In this case it is

important that the classifications be highly accurate, as the

student profiles generated from this process are being used

to assist with understanding student progress.

A student could be shown how their behaviour has been clas-

sified by the algorithm. At this point, we argue that the utility

of a highly accurate classification becomes more difficult to

judge: will the student learn more if they are shown a perfect

classification of their behaviour, or one whose accuracy they

must judge?

1.2.2 Learning to learn. Student facing contexts open up new

possibilities for using LA to help people learn how to learn [12].

Here, wewill argue that this second case creates new criteria against

which the performance of our computational approaches should

be judged. We shall return to this concept in Section 5, but first we

will consider an analogy from another field as it increasingly found

itself needing to incorporate the user into an analytics loop.

2 A CAUTIONARY TALE FROM
INFORMATION RETRIEVAL

How is validation carried out in computer science? One common

way to judge the worth of a computational approach involves a

consideration of various performance metrics that are defined in

terms of how often a task is correctly vs incorrectly performed. For

example, when using an algorithm to classify some data trace (e.g.

whether a student will get a quiz question correct), we consider

whether the algorithm correctly predicted a positive result (true

positive, tp), correctly specified a negative result (true negative, tn),
or got the response wrong, returning a false negative (f n) or false
positive (f p). This must be done with respect to a ground truth

dataset that contains the actual student responses. Given these

preliminary metrics, we can construct more complex ones:

Precision considers how many times a true positive was re-

turned out of all positive responses:

Precision =
tp

tp + f p
. (1)

Recall reports upon how many times a true positive was re-

turned out of all that should have been returned:

Recall =
tp

tp + f n
. (2)

Accuracy is then defined as the proportion of correctly per-

formed tasks out of all possible tasks (N ):

Accuracy =
tp + tn

N
=

tp + tn

tp + tn + f p + f n
. (3)

Considering metrics such as these provides us with a number of

ways to compare the performance of different algorithms when

applied to the same datasets. They also serve as the basis for more

complex metrics, such as the ROC curve, R2, and Root Mean Square

Error (RMSE) [21], some combination of which are frequently re-

ported as performance metrics according to an implicit assumption

that error should be minimised, and accuracy should be maximised.

There are fields which have already followed this trajectory. One

notable example arose in Information Retrieval (IR), a field which

enforces very strict requirements that new models and algorithms

be evaluated for improved performance over existing baselines,

often with reference to precision based metrics. However, in 2006,

Turpin and Scholer [50] published an influential paper that called

the entire focus upon precision in IR into question. They considered
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mean average precision (MAP), which is a performance metric

calculated by taking the mean of the precision scores obtained in

a search after each relevant document is retrieved, with relevant

documents that are not retrieved receiving a precision score of zero.

A higher MAP is indicative of better search results over a series of

defined queries in a specified dataset. Turpin and Scholer carefully

degraded the performance of a search engine in a toy system, to

the extent that it exhibited MAP scores between 55% and 95% at

a number of different settings. This search engine was then used

in a task that required users to find a single document relevant to

a topic, with their performance measured by the length of time

taken. Turpin and Scholer showed that there was no significant

relationship between system effectiveness measured by MAP and

performance in the user task over this range of MAP scores. This

suggested that a search engine user is highly unlikely to notice

even a large change in an algorithm’s precision.

Note that this scenario only arises because a human has been

introduced into an analytics loop. While the task of finding a rele-

vant document should in theory have been helped by an algorithm

with higher precision scores, the user experience and performance

was not significantly improved. There are a broad range of papers

that have shown comparable effects [1, 9, 10, 25], although a subset

of results appear to suggest that higher precision does correlate

with higher user satisfaction ratings [43]. The full implications of

putting humans in the evaluation loop are still being investigated in

IR, but this line of work has spawned a whole subfield of user mod-

elling approaches attempting to diversify the evaluation metrics

used in IR by directly incorporating concepts like user satisfaction,

diversity and novelty of results [1, 9, 10]. For example, Clarke et al.

[10] have presented a framework for evaluation that systematically

rewards novelty (i.e. the need to avoid redundancy in search results,

where the same document adds nothing to a user’s information

need) and diversity (i.e. the need to cover ambiguous terms, such as

homonyms which have more than one meaning) in search results.

Such an approach might prove effective if attempting to reward a

LA tool that encouraged students towards new ideas, creativity and

diversity from their current approach.

Since the success of information search is easier to evaluate than

the more complex and multifaceted task of learning, it is important

to ask a related question: are similar results likely to arise in LA?

3 DOES LA HELP LEARNING?
Interestingly, a recent paper from Educational Data Mining (EDM)

calls attention to similar concerns about the validation of compu-

tational models in the learning sciences. Liu and Koedinger [30]

point out that while EDM aims to improve learning outcomes, its

emphasis on the ‘educational’ aspect of educational
data mining has been scarce. . .One reason for this is
the inclination of researchers to evaluate EDM research
primarily for model fits and predictive accuracy rather
than for plausibility, interpretability, and generalizable
insights.

Instead of relying solely on computational validationmetrics, which

are “difficult or impossible to interpret” [30, p37], Liu and Koedinger

make use of a “human in the loop” analytical component to model

the underlying cognitive state of the learner and to then understand

how adjustments in a ITS can lead to better learning outcomes. They

recommend moving away from automated methods, and towards

the mapping of digital traces describing student activity onto inter-

pretable constructs of interest (e.g. Knowledge Components, and

the Q-matrix in ITS) which facilitate actionable analytics. Liu and

Koedinger [30] achieve balance by demonstrating improved student

learning outcomes (using pre and post-tests) in addition to their

reporting of an improved RMSE value compared to an earlier ITS.

3.1 What is an improvement?
Despite the undeniable successes that have come with computa-

tional approaches, it is essential that LA practitioners recognise

just how complex the domain of education is when framing our

understanding of what they entail. What precisely do we mean

by learning? And how can we judge the worth of our algorithms

within this understanding? An example will help to illustrate the dif-

ficulty associated with asking these questions. Consider Kovanović

et al. [29], which demonstrates an automated classification of the

“cognitive presence” construct in online discussion fora. This ap-

proach achieves an accuracy of 70.3% using a Random Forest model

with 205 features and applying SMOTE sampling to correct for

unbalanced data across 5 categories of learner event (triggering,

exploration, integration, resolution and other, which implies a base-

line performance of 20%). Would the result of this paper be more
convincing if it reported a higher accuracy? In a purely compu-

tational field, it would be quite reasonable, and publishable, for

another researcher to aim to exceed these performance metrics,

but we would like to question the merits of this course of action

for LA. That is, we should not follow a path just because it is well

understood; we should be asking if the path will actually lead us in

a direction that we need to go. Let us consider some other sound

papers that were recently published in LAK and EDM from this

lens; how likely are they to result in improved learning outcomes?

Consider for example the very interesting work by Allen et al.

[2], which attempts to classify a dataset of individual difference

measures, text, and keystroke analytics to match self-reported stu-

dent affective states (in this case boredom and disengagement).

While the authors themselves describe their work as preliminary,

we note that the accuracy scores reported in this classification as

ranging between 76.5% and 77.3% are not likely to be maintained if

applied to a genuinely new dataset (rather than using the leave-one-

out-cross-validation approach adopted in this paper). The standard

deviations for the variables used in the classifier are large compared

to the feature values themselves, and the student self-report process

is likely to result in a high variability between subjects. Is an im-

provement of around 25% over a baseline classification of 50% good

enough for stability? We will not know until a replication study is

performed. Indeed, another paper from the same LAK conference

by Buckingham Shum et al. [8] evaluates the performance of a

reflective writing analytics tool across multiple datasets, demon-

strating a range in accuracy from 70–80% when using the same

parameter settings. At what point do we know that any of these

classifiers is accurate enough?

Some of the most computationally advanced approaches arise in

Knowledge Tracing (KT) scenarios, which seek to model a student’s

mastery of some body of knowledge. As these approaches have
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been trialled for a long period of time, there is a large collection

of baseline work against which new models can be compared, and

these improvements are often reported using computational metrics

with very minor improvements demonstrated either between a new

approach when compared to an existing one, or between algorithms

compared in the paper itself [39, 40, 44]. While a hypothesis test

is often used to denote statistical significance using a p-value, the

general lack of effect size data suggests that there is every chance

these results will not prove to be replicable [19]. Indeed, Beck and

Xiong [5] discuss the way in which many ITS methods have failed

to replicate, and even more interestingly, they show that a class

of these models is approaching the limits to accuracy that might

plausibly be obtained, despite remarkably low levels of accuracy.
Even if robust ways of improving these performance metrics can be

obtained: will they result in better learning outcomes? The results

from Section 2 give us reason to pause. More convincing advances

are provided by David et al. [14], and the already discussed Liu

and Koedinger [30]. These two papers back up their computational

validation with user trials that demonstrate improved learning out-

comes for students using the new tool over a comparable baseline.

This brings us to the first warning of this paper:

Warning 1. For some educational scenarios, reporting improve-
ment in algorithmic performance is insufficient as a form of validation.

Before starting to move towards a specification of what we might

consider a sufficient validation strategy (in Section 6), we must

first examine some of the different ways in which computational

evaluation metrics can fail in educational scenarios.

3.2 Measuring the wrong thing
Perhaps one of the most obvious mistakes that could be made would

involve reporting upon a metric that has little to do with the task

at hand. It is easy to make the mistake of concentrating develop-

ment in LA upon a concept that is easy to define and track, but not

particularly useful to learning. A common example of this prob-

lem is provided by dashboards in Learning Management Systems.

Not surprisingly, many educators and learning scientists express

scepticism about the relationship between these visualisations and

learning [22], concerned that feedback about low level user actions

such as number of log ins, videos watched, or documents submit-

ted does not illuminate progress in learning, for either students

or educators. This failure to provide LA that actually helps learn-

ing arises because of an overemphasis upon valuing what we can

measure, instead of measuring what we value — a longstanding

concern in educational assessment [53]. To take a more advanced

example, consider the writing analytics tool that we have been de-

veloping [20], which is able to give automated formative feedback

on reflective and analytical forms of academic writing. The tool

does not replicate spelling and grammar checkers, although the

team could have invested effort in perfecting the associated code to

report metrics on how improved different versions were. Such an

‘improvement’ in accuracy would have distracted developer effort

and student attention from a focus on thinking about the higher

order rhetorical moves in their writing (the purpose of the tool).

A focus on improving the wrong analytics will contribute noth-

ing to student learning, and yet this is an easy mistake to make. We

have arrived at the next warning of this paper:

Warning 2. Being able to report upon a metric does not mean
that you should use it, either in the tool, or in reporting its worth.

4 THOUGHT EXPERIMENTS IN PERFECT
CLASSIFICATION

Once we have (i) understood what type of learning we are trying

to facilitate in our students, and (ii) are sure we are measuring the

right thing, we must start to consider (iii) precisely how accurate

our student facing LA must be to assist this outcome. Here, we

will introduce two perfect classification thought experiments. This

will help us to clarify why perfect accuracy does not ‘solve’ the

LA design challenge. On the contrary, we will argue that imperfect

analytics will sometimes be useful in enhancing student learning.

4.1 Writing Analytics
Returning to the writing analytics example of Gibson et al. [20], this

work seeks to make visible those aspects of writing where a student

has made a “rhetorical move” commonly found in academic argu-

mentation, or professional reflection. The authors describe the set

of moves, the mechanisms for implementing them, and the degree

to which an automated classifier matches human judgement, which

by computational standards leaves much room for improvement.

It would seem desirable then, to create a system which could

identify all of the relevant rhetorical moves with perfect accuracy,

and then provide feedback for the student about where they occur

and when they are missing.

However, there are at least three reasons to be cautious about

adopting such an approach. Firstly, the way students learn to write
is not the same as the way experts make sense of writing. While

identifying rhetorical moves may assist in the analysis of writing,

students do not necessarily learn to write by stringing together a

series of rhetorical moves. There is a large amount of “intellectual

infrastructure” that a person must build as they gain expertise, so

we would want to first ask questions such as: Can this student

understand the concept of rhetorical moves? and; Would it be more

effective to design writing improvement activities that give them an

opportunity to practice this skill first? A computational approach

to validation has nothing to say on this issue.

Secondly, because the machine can read an essay in less than

a second and return real time feedback, the student could easily

be overwhelmed by too much feedback — e.g. a report might be

generated which tells a student 42 things they should do to improve

their draft. Rather, we would want to ask what the most important

elements to foreground are, at the current stage in a student’s

journey to becoming an accomplished writer. This is a standard

strategy used in teaching writing: an experienced PhD supervisor

knows not to provide all their feedback at once (which would be

the most accurate solution); they provide it in manageable chunks,

tailored to each student.

Finally, it is important to differentiate between improved out-
comes, such as submitting a good piece of writing, and learning how
to write in a way that will translate to new contexts. It is entirely

conceivable that students might ‘correct’ their work in the light

of the feedback they receive from a LA tool, finishing their essay

faster and obtaining higher grades. Would we count this as an ana-

lytics success story? Arguably not, particularly if the student had
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failed to internalise the reasons for the improvement, and could

not translate the skills to new writing without being dependent on

the tool. At this point we would have a partial analogy to writers

who are dependent on spelling and grammar checkers: they have

‘outsourced’ this task to the machine.

This thought experiment suggests that even if a machine could
perfectly identify all of the rhetorical moves in a piece of writing,

it does not follow that it should show everything to a student to

nurture the right kind of learning (i.e. learning to write).

Warning 3. Feedback should not necessarily be set at the same
resolution that the analytics make possible.

Since writing is an extremely complex form of learner trace to

analyse, with infinite expressive nuance and potentially multiple

levels of meaning, it is reasonable to assume that in fact, perfect

analytics are in principle not going to be possible — they will remain

a thought experiment. However, imperfect as it is, the writing

analytics tool of Gibson et al. [20] is being piloted with students.

These trials are leading to largely positive student self-reports and

indications that the tool leads to writing process improvements

such as more redrafting [47]. While evidence is still required that

this tool improves the writing product produced by students, when

we are dealing with higher order competencies, imperfection need

not be the enemy of the good when it comes to learning analytics,

as the following example also illustrates.

4.2 Online forum analytics
The “cognitive presence” classifier discussed in Section 3.1 is cur-

rently the best performing classifier for this educational construct

[29]. While it achieved an accuracy of 70.3% for the dataset on

which it was trained, it is unlikely to perform as well on a different

dataset. Even if this classifier demonstrated performance metrics

above some threshold for a defined collection of datasets, it is un-

likely to maintain this performance across all educational scenarios,

especially given the variability in online discussion fora. Should its

status therefore be confined to that of a research prototype until it

can score 80-90%? Perhaps we need an even better accuracy? Or

could it already be deployed with students in some way?

We have a second line of research leading to the development of

an “Active Learning Squared (AL
2
)” paradigm [28], which makes

use of a cognitive presence classifier to scaffold student metacogni-

tion. AL
2
is so-called because it seeks to promote both active/self-

regulated student learning [54] and active machine learning (i.e.

aiming to reduce the amount of time required to create a labelled

corpus that will be used to train the classifier e.g. [46]). AL
2
can

only make use of an imperfect classifier because the methodology

is coupled with a tight learning design that requires students to

understand why they are participating in the activity [27]. In the

trials that have been run to date [28] this activity is used to help

students learn (i) how machine learning classifies text, and (ii) what

their profile of behaviour in an online discussion forum looks like.

What is the point of this activity from the perspective of the

student? In this scenario the student is encouraged to reflect upon

how the algorithm is being used to classify their behaviour, and to

challenge classifications that they think are wrong. This learning

activity is designed to help students to open up the black box of

machine learning [6, 35] and to question the way in which it may

be inappropriately used. Therefore, the AL
2
tool aims to increase

the cognitive load of a student, slowing down their heuristic think-

ing and helping them to drop into a more thoughtful or reflective

mode [24]. The aim of this scenario is therefore not to teach a stu-

dent how to classify text (although they might also learn how to

do this). At its core AL
2
aims to improve students’ understanding

of how machine learning works (and specifically that it can be

wrong) while teaching them about an educational construct that

is likely to help with their participation in a common educational

scenario (i.e. communicating in a discussion forum). Note that with

this understanding, the learning task (building data literacy) is dif-

ferent from the activity that is being carried out by the student

(correcting the classifications). We demonstrated that when em-

bedded in good learning design, students can engage productively

with this imperfect analytics tool to reflect more deeply about their

behaviour. However, we do not yet have conclusive evidence that

in this pedagogical setting, student outcomes are improved because
the classifier is imperfect.

We can, however, reflect on this claim via a second thought

experiment. It is plausible that a hypothetical student could move

through the learning activity with little underlying motivation to

question how their behaviour has been classified — the machine is

always correct after all, and they are merely ‘rubber-stamping’ its

decisions. However, as D’Mello and Graesser [15] demonstrate, it

is when the student experiences dissonance because the analytics

fail to match their expectations that they are likely to reflect on

why they think the machine is wrong. We believe that this form of

critical questioning is more likely to happen if the student has been

given an underlying reason to be a little distrustful of the classifier.

But how imperfect can the classifier be? Is there an optimal level

of misclassification for student learning in scenarios like this? This

line of questioning is yet to be pursued in the LA community.

4.3 Using imperfect machine learning now
It is worth pausing at this point to highlight the new avenue that

AL
2
has opened up. This approach arose from asking an important

question: how accurate does Machine Learning (ML) need to be

before we can safely use it? There is no immediate reason to believe

that classifiers will maintain performance across all educational

scenarios. Education is a field which contains an enormous number

of potential features, hard to capture contextual influences and other

confounding variables. If we insist on prioritising computational

approaches to validation then a classifier with better precision,

recall etc. should be preferred. But how much data is enough to

train a sufficiently accurate classifier? And how will we know that

we have trained the classifier over all relevant classes of student

behaviour? It is usually assumed to be important that classifiers be

accurate, as otherwise a student will be subjected to inappropriate

interventions. However, such a position leaves us in a dilemma; are

we to wait until perfect accuracy is achieved?

In Section 4.2 it was the bricolage nature of LA itself that sug-

gested an alternative approach, one based upon an educational

paradigm. Instead of waiting for an unrealistic error free classifier

that we can use without fear, the problem has been reframed by

reconsidering the underlying purpose of classifiers in LA. Are they

being used to teach skills and knowledge? Or, can they be used
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to encourage our students in learning how to learn? In this paper

we have so far seen imperfection used in examples of learning to

think and write critically and reflectively, as well as learning how

to contribute critically and constructively to a discussion, but many

more opportunities present. Learning to learn requires only that

our algorithms encourage students to think deeply as a result of

some activity, not that they be perfectly accurate. Indeed, we might

ask what most helps a student to learn; a perfectly accurate classi-

fication? Or a provocation that they might challenge? We see the

AL
2
paradigm as an early example of following this questioning

through to its logical conclusion, bringing us to our final warning:

Warning 4. Overemphasising computational accuracy is likely to
delay the adoption of LA tools that could already be used productively.

5 LEARNING HOW TO LEARN IN
AUTHENTIC CONTEXTS

Section 1.2 recognised the different types of learning that LA needs

to support, and Section 3 noted that there is a tendency for LA tools

to be evaluated in computational terms, rather than with reference

to improved learning outcomes. We then briefly considered two

examples as a way of introducing the idea that perfect machine

classification of student behaviour may be unattainable, and possi-

bly even educationally undesirable. In this section we characterise

those examples as falling into a broader class of contexts — those

in which “learning how to learn" is an explicit learning objective

that arises alongside another one: that of a rapidly evolving future

where “equipping students with knowledge, skills, and dispositions

that prepare them for lifelong learning, in a complex and uncertain

world” [7, p6] is increasingly important.

Creativity, critical thinking, agency, curiosity, and an ability

to tolerate uncertainty are increasingly emphasised in curricula

around the world. This shift also entails the use of more authentic

learning contexts and assessments that are designed to create con-

ditions where these qualities can differentiate learners. Thus, the

emphasis is shifting towards ‘wilder’ learning environments, which

are more open and difficult to control than a school or university

classroom. These situations provide LA with more open-ended chal-

lenges, and a wide range of complex characteristics. They include:

• Embodied, skilled performance: Scenarios in which an

important part of the learning experience involves material

that is not ‘online’ but physically embodied (e.g. inspecting

a forest; a nursing ward; conducting a social services risk

assessment). This embodiment makes it both far more com-

plex, if not impossible, to tightly control what will happen,

as well as making outcomes far harder to digitally monitor.

• Transformed perspective: Assessments where we focus

upon the sense that a learner can make of their experience,

or a shift in worldview, which by definition is not accessible

to the machine, but to which a machine might have partial

access (e.g. a reflective journal on a work placement).

• No correct solution: Genuinely complex ‘wicked’ prob-

lems that have no correct solution, only better or worse

interventions, which makes definitions of ‘mastery’ hard, if

not impossible to formalise (e.g. a group project to devise

a homelessness strategy that is acceptable to the homeless,

the police and residents).

• Socially andpsychologically complex performance: Sce-
narios where the focus of assessment is emergent in nature, a

function of many drivers that result in unpredictable and/or

unique outcomes, often because social interaction is central

to the process (e.g. the quality of a therapeutic session, or of

a conflict resolution process).

Analytics based approaches for tackling some of the above are

emerging [7], but returning to our thought experiments, we might

expect that such analytics will in principle have a high degree of
imperfection: it is likely to be impossible for computers to sense

all relevant environmental variables, and to formally model the

relationships between those variables and learners’ psycho-social

states. Rather, teaching in such situations requires educators to

design the conditions in which learners cultivate the disposition

to engage with feedback, and by extension LA systems, in mindful

ways. This in turn requires that designers of LA infrastructure create

software with the affordances to encourage such active engagement,

and learning design patterns for the coherent integration of such

tools into the learning experience. We elaborate on this next.

6 EMBRACING IMPERFECTION
How might we move beyond an overemphasis upon trying to elim-

inate imperfection in the algorithms that LA utilises? Innovations

such as this form part of an essential transition for new inter-

disciplinary fields. Rather than adopting tools and methods from

other fields and applying them to a new context (a scenario that

is normally understood as cross-disciplinary) it is essential that

interdisciplinary fields transition to idea generation as they ma-

ture, a concept that was recently discussed in a similarly bricolage

field, Human-Computer Interaction, where Liu et al. [31] argued

that interdisciplinary fields must start to create their own motor
themes, or dominant paradigms, in order to achieve focussed re-

search direction. We propose that embracing imperfection could be a
new mode of conceptual understanding that comes from a genuine

intersection and extension of LAs contributing disciplines [49].

In this section we will discuss key concepts that we believe will

help LA to embrace imperfection in student facing solutions. This

will facilitate the discussion in Section 6.3, where we operationalise

the concepts in this paper with a suggestion for a more holistic

evaluation of LA tools that could be used to enhance transparency

and cross comparison in scenarios where this becomes necessary.

6.1 Aligning LA with Learning Design
Firstly, referring to the discussion of Section 4.2 we see that the im-

perfect ML applied in the AL
2
paradigm was used only with careful

learning design (LD). Kitto et al. [28] have recently demonstrated

that a tight integration of LA with LD appears to help generate

more reflective students for one set of scenarios. In that case, a

set of trials that required students to write reflective blogs about

their participation in the online community carefully increased the

coupling of LA to LD, with an apparent improvement in student

learning outcomes. However, this improvement is hard to measure.

How can we judge the validity of the approach?

Similarly, referring back to Section 4.1, more recent work using

the AWA tool uses LD to scaffold an entire writing improvement

activity [47]. Students are guided through a series of tasks, such
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as understanding the instructor’s rubric, improving a sample text,

reviewing exemplar improvements, self-assessing their work, and

reflecting on the quality of the automated feedback. This LA toolset

is designed in a modular fashion to support the learning design used

by an instructor, who can select the task components to be included,

and personalise the feedback experience for different students.

Both of these scenarios align with the notion of process analytics

that was first discussed by Lockyer et al. [32], in which students are

guided towards critical reflection about their behaviour in perform-

ing activities. They are given many opportunities to formatively

engage with and reflect upon the automated feedback that they

receive along the way, building to the point where they are formally

assessed on the understanding that they have gained in the process.

Note that in both of the above examples, the students are explic-

itly alerted that the analytics could be incorrect in some way, and

this is a feature that they should work with:

. . . students are given a very brief one page tutorial about
what cognitive presence construct is, and then encour-
aged to enter into an activity where a classifier scaffolds
them during their analyse phase. A screen shows them
how specific posts they have made in their learning com-
munity have been classified, and instructs them to think
about this classification and to correct it if they think
it is wrong. They are also encouraged to record reasons
for this reclassification, and to highlight features in the
post they think are indicative of their new classification.
[28, p157]

and

. . . students should be encouraged to argue with the ma-
chine when they disagree with the feedback. Assum-
ing there is an acceptable signal-to-noise ratio, this
is exactly the higher level of discourse that we want
to provoke. Academics have often proposed to us that
they could envisage productive collaborative activities
in which pairs of students use their AWA reports as a
springboard for discussion with each other. [8, p78]

Thus, both scenarios encourage students to critically reflect upon

what the LA says about them, and to challenge those analytics if

they think that they are incorrect. It is essential that the field of LA

operationalise the way in which it discusses this linking of analytics

with LD, and test the ability of our tools to facilitate this process.

To summarise, it is the careful use of LD that both mitigates

for, and indeed takes advantage of, imperfect analytics. The gap

between the learner’s model and the machine’s model (of the world

and the student’s learning), creates a ‘teachable moment’, a disso-

nance that requires resolution. The machine’s limitations are thus

compensated for by the human’s intelligence: the burden is placed
on the learner to make sense of the analytics, in a process that has
been designed to advance their learning. This approach is an example

of how LA can combine AI with IA: Intelligence Augmentation, as

argued for by Engelbart in 1962 [17]. IA advocates that new soft-

ware tools for intellectual work must be co-evolved with new work

practices and human training (for another example in the context

of ITS, see Baker’s argument [3]). Once the analytics is embedded

in an appropriate learning design we can see that its purpose is to

provide enough scaffolding to “start a conversation” between the

student and the analytics-driven feedback, or between peers. Here

we see formative feedback coming to the fore in scenarios that aim

to encourage students to think more deeply about their own be-

haviours and perhaps to modify them. Concepts like computational

accuracy should be reframed as important only to the degree that
they facilitate this process.

We argue, therefore, that imperfections in our computational ap-

proaches are not only intrinsic to more complex, authentic learning

scenarios, but are in fact a feature to be exploited in well designed
learning activities. Instead of eliminating imperfection from our

models, we can use it as a strategic asset that can be embraced in

the pursuit of analytics-informed approaches to the kinds of learn-

ing discussed in Section 5. Taking advantage of this opportunity

will require a shift in mindset, away from scenarios where analytics

invisibly control what learners can see and do, and towards sce-

narios where learners are provided with tools that help them take

responsibility for their learning, and reflect critically on automated

feedback. We will also require new ways to gauge the extent to

which our tools facilitate this process (a point to which we shall

return in Section 6.3).

6.2 Designing for mindful student engagement
with automated feedback

In a widely cited paper from 1991, Salomon et al. [42] reflect on the

relationships that learners can have with educational technologies,

and hence, how researchers should frame the task of evaluating

them. Should the distributed intelligence of the whole system’s

performance (humans + technology) be the output measure? (It

often far exceeds humans working alone.) Or, should we also be

concerned with the effects on human performance when stripped of

the technology? This paper seems as topical now as it was 27 years

ago in a different digital era, and merits a far deeper examination

than space permits here.

We will constrain ourselves to drawing attention to a specific

concept that they introduce, which is particularly relevant to the

present discussion, namely the concept ofmindful engagement with
technology. Salomon et al. [42] are concerned that students move

beyond mindless use of potentially powerful cognitive tools, and

instead employ “nonautomatic, effortful, and thus metacognitively

guided processes” [p4]. This is precisely the role that we have been

arguing that “imperfect analytics” can help to facilitate, and the

kinds of automated feedback that they can give. The fact that the

learner is required to work harder to assess what they are being

presented with is a feature, not a bug.

6.3 But then how should we evaluate success?
This paper has made the argument that computational metrics can

be misleading in a wide variety of ways. We are of course not ar-

guing that they should be discarded, but rather that they must be

considered within the larger context of learning, especially when

being used to evaluate student facing LA that has a “learning to

learn” focus. What then would this larger context entail? Many

different groups have proposed frameworks for LA that consider

the way in which we must complete the loop to return analytics to

the user (see e.g. [11, 41, 45]). However, we are yet to see consider-

ations of this process that explicitly call attention to the interaction
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Figure 1: Five forms of validation in the analytics cycle.

between accuracy and opportunities for more complex metacog-

nition in student facing solutions. In Figure 1 we give a general

representation of key aspects of these frameworks. Taking it as

a reference point we can see that the computational approach to

validating LA emphasises the path traced out by the dashed arrow,

whereby a signal produced by the learner is modelled and analysed,

and the outputs of this process are then tested for accuracy, preci-

sion, etc. according to a reference standard, which in the best cases

is an open dataset and associated metrics.

We would like to draw attention to some points in the LA cycle

(denoted by letters (a)–(d) in Figure 1) that this paper has shown

tend to be less well considered, but which must nevertheless form a

part of any systemic LA evaluation strategy. Specifically, there are

four additional points where we think all student-facing LA tools

should be held accountable when evaluating them:

(a) What is the learning activity inwhich this LA tool should
be used? This could be specified using a well articulated learn-

ing design which describes the learning activity that a learner

engages in.What are the underlying motivations of the activity?

What data objects are produced? And which ones are ignored?

(b) What model is used to link these low level data traces to
the analytics?Models are often a hidden assumption behind

a LA cycle, but they should be both specified and justified (es-

pecially if there is no well established educational, social or

psychological model driving the analytics cycle).

(c) What form of feedback is provided to learners? Has it

been designed according to a well understood process? Has

it been evaluated by end users? What metrics can be used here

to judge the worth of the tool? Note that a user evaluation

of LA tools (while important) is not adequate for a complete

understanding of its value.

(d) In what ways does the feedback contribute to any form
of learning gain?Our students need to be able to interpret and
make sense of the reports that have been produced, reflecting

upon what it means to them, and whether they should change

their participation in the learning activity. Few studies attempt

to do this, and they tend to belong to the content and skills

type learning scenarios discussed in Section 1.2. We have even

fewer ways of responding to this question when we consider

scenarios where our students are learning how to learn.

We propose that a standard and holistic approach to validating

student facing learning analytics should be required to report upon

these 4 components of the learning analytics cycle in addition to
reporting upon relevant computational performance metrics such

as accuracy. The LA community could move forwards in this impor-

tant area if it were to adopt a standardised template for reporting

upon all components of the LA cycle. Such a template would push

groups beyond implicit assumptions that e.g. computational metrics

are sufficient as a quality indicator, and give us a way of comparing

the maturity of different approaches and tools. Some of the slots will

be empty for some approaches. This is not necessarily a problem at

the early stages of a tool’s development, but if a group consistently

fails to provide information on a specific point then this should be

seen as a problem for the LA tool, detracting from its usefulness.

What would this standardised approach look like? We will illus-

trate an early attempt at this more comprehensive reporting of LA

tool performance using the two specific instances of student facing

tools that have been discussed throughout this paper.

6.3.1 Reflective Writing Analytics, RWA, [20].

(a) Learning Design: The purpose of this tool is to teach students

how to produce more reflective writing. The software has been

designed to accommodate the learning design of individual

subjects, with each subject also drawing on the theoretical

model which informed the design of the analytics.

(b) Model: The model was developed from educational theories of

reflection and reflective writing, and is informed by Systemic

Functional Linguistics [20].

(c) Feedback: Students are presented with annotations based on

sentence and sub-sentence level feature alignment with the

model. They are also provided with textual feedback assisting

with the interpretations of the annotations.

(d) Sensemaking/Gain: The students engage in a sensemaking

process that connects knowledge of the theoretical model as

presented in the subject learning resources (including a rubric)

with the annotations they view in the text. Annotations are an

affirmation that they are ‘on the right track’. Where annotations

are limited, the textual feedback draws student attention to

missing elements, and the student is required to return to the

subject resources to address the deficiencies in their writing.

(e) Accuracy: Buckingham Shum et al. [8] document conventional

classification metrics for an early version of the reflective writ-

ing parser (Precision 0.509; Recall 0.623; Accuracy 0.799; F1

0.56). The complexities of establishing a human gold standard

for a construct such as ‘reflection’, as well as the limitations of

the parser are identified as contributing to the relatively poor

results. However, while these are not strong metrics by conven-

tional standards, the tool is being used in class contexts, since

the limitations of machine intelligence are made up for by re-

minding students that they have the agency to reflect critically

on the feedback, and the way in which the tool is aligned with

the curriculum materials guides them to reflect on the extent

to which they have addressed the subject requirements.

6.3.2 Active Learning Squared, AL2, [28].

(a) Learning Design: The purpose of this tool is twofold: it should
teach students data literacy; and help them to learn about the
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educational framework against which their behaviour has been

classified. A LD pattern has been developed alongside the AL
2

tool, but its utility in facilitating student learning has yet to be

tested beyond a preliminary pilot stage.

(b) Model: This approach relies upon a dual process model of

cognition [24]. Thus, it hypothesises that student facing LA can

be designed to encourage students to drop into ‘slow’ and deep

reasoning processes from ‘fast’ heuristic approaches. To date

this process has been coupled with the Community of Inquiry

model that drives the “cognitive presence” construct used in the

classifier [29], but other models could be used as appropriate

classifiers are developed.

(c) Feedback: Automated classifications from ML are appended

to student comments and presented in a new display.

(d) Sensemaking/Gain: Students engage in AL
2
via a web based

dashboard that first presents them with a one page explanation

of the educational schema that the classifier is applying to their

text, and a warning that it is not completely accurate. They

then navigate through a series of pages where each post that

they have made is presented, along with the forum context in

which it appears. The interface allows the student to (i) change

the classification of their post, (ii), highlight components of

the post that they feel are indicative of the classification they

have chosen, (iii) leave a comment about why they chose that

classification. Thus, this dashboard has been very carefully de-

signed to encourage sensemaking. User trials of this dashboard

have been preliminary pilot studies, and so evaluations of how

successful the tool is in developing student data literacy are yet

to be performed. Trials are planned for 2018.

(e) Accuracy: The accuracy of the classifier used in the initial pilot

trials was very low. A simple Naive Bayes classifier was imple-

mented (accuracy 30.2%) rather than the state of the art solution

as this was not available at the time of the trials. The perfor-

mance of that state of the art solution when trained on its orig-

inal data set (without the subset of Coh-Metrix features due to

the closed nature of that code base) on the same data was 47.3%

when applied to the data set with the SMOTE sampling turned

off during the training process, with performance dropping to

30.5% when the classifier was trained using SMOTE sampling.

This generally low performance points to potential overfitting

of the best performing classifier to its training dataset.

6.3.3 A comparison. More work obviously remains to be done,

but within this reporting format we can start to see some simi-

larities and differences between the two approaches. For example,

RWA has been designed to be adapted to the specifics of a course

by any teacher who would like to improve the reflective writing

capabilities of their students. This adoption will require careful ex-

amination of the tool and the creation of well thought out learning

designs that teachers can use ‘off the shelf’ in a manner similar to

the new work completed by Shibani et al. [47]. In contrast, AL
2
has

a specific learning design already, which could be extended and

used with many classifiers of student behaviour. However, use cases

for the tool are reasonably restrictive and cannot be adapted with

the same flexibility as RWA. Both approaches have well defined

models driving the LA, a feature that is likely to be increasingly

necessary, as we discover that low level clickstream data is not

generally amenable for model free extraction into educationally

relevant reports. Both approaches have well developed feedback

capabilities, and a strong emphasis upon student agency for sense-

making. Neither have been well tested in terms of the learning gains

that they generate; an area that is now a high priority for both re-

search and development programs. Note that neither approach rests

solely on the accuracy of the computational methods that the tools

use. Had the evaluation strategy considered only accuracy, then

neither tool would have been deployed with students.

7 CONCLUSIONS
We have argued that inappropriate outcomes are likely when com-

putational approaches are used to evaluate a specific class of student

facing LA solutions (i.e. those aiming to help our students learn

how to learn).

Rather than importing established computational paradigms for

the validation of our tools, we contend that there is significant

opportunity for LA to question those assumptions, and work on

developing new validation criteria that emphasise learning out-

comes. A preliminary proposal for operationalising these ideas has

been exemplified with the Reflective Writing and Active Learning

Squared analytics examples. However, while designing, deploy-

ing and evaluating those two examples has served to ground our

thinking, we have identified a pattern in the ‘signals’ we are seeing

from thought leaders in related fields such as: Engelbart (Intelli-

gence Augmentation); Baker and Koedinger (Intelligent Tutoring

Systems); Salomon (Educational Technology); Turpin and Scholer

(Information Retrieval). Each of these contributions point to the

complexity of evaluation when a human “is in the loop”, and to-

gether with this paper, provide mounting evidence that embracing

imperfection is a rich and fertile avenue of research to pursue.

To conclude, our hope is that this paper serves as both a caution-

ary tale, and a provocation to open up a new direction in which the

LA communitymight choose to travel. As an emerging fieldwemust

constantly check the assumptions embedded in the worldviews and

technologies of our diverse constituent disciplines. Learning An-

alytics has the chance to mature with new approaches that grow

from a genuine dialogue and mutual adaptation of its contributing

fields. Can the field earn a truly transdisciplinary status?
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